Online Mendelian Inheritance in Man (OMIM) (2024)

  1. Allen, R. C., Nachtman, R. G., Rosenblatt, H. M., Belmont, J. W. Application of carrier testing to genetic counseling for X-linked agammaglobulinemia. Am. J. Hum. Genet. 54: 25-35, 1994. [PubMed: 7506482]

  2. Ament, M. E., Ochs, H. D., Davis, S. D. Structure and function of the gastrointestinal tract in primary immunodeficiency syndromes: a study of 39 patients. Medicine 52: 227-248, 1973. [PubMed: 20407413] [Full Text: https://doi.org/10.1097/00005792-197305000-00004]

  3. Bruton, O. C. Agammaglobulinemia. Pediatrics 9: 722-727, 1952. [PubMed: 14929630]

  4. Buckle, V. J., Edwards, J. H., Evans, E. P., Jonasson, J. A., Lyon, M. F., Peters, J., Searle, A. G. Comparative maps of human and mouse X chromosomes. (Abstract) Cytogenet. Cell Genet. 40: 594-595, 1985.

  5. Cohen, D. I., Hedrick, S. M., Nielsen, E. A., D'Eustachio, P., Ruddle, F., Steinberg, A. D., Paul, W. E., Davis, M. M. Isolation of a cDNA clone corresponding to an X-linked gene family (XLR) closely linked to the murine immunodeficiency disorder xid. Nature 314: 369-372, 1985. [PubMed: 2984575] [Full Text: https://doi.org/10.1038/314369a0]

  6. Conley, M. E., Brown, P., Pickard, A. R., Buckley, R. H., Miller, D. S., Raskind, W. H., Singer, J. W., Fialkow, P. J. Expression of the gene defect in X-linked agammaglobulinemia. New Eng. J. Med. 315: 564-567, 1986. [PubMed: 3488506] [Full Text: https://doi.org/10.1056/NEJM198608283150907]

  7. Edwards, N. L., Magilavy, D. B., Cassidy, J. T., Fox, I. H. Lymphocyte ecto-5-prime-nucleotidase deficiency in agammaglobulinemia. Science 201: 628-630, 1978. [PubMed: 27864] [Full Text: https://doi.org/10.1126/science.27864]

  8. Erlendsson, K., Swartz, T., Dwyer, J. M. Successful reversal of echovirus encephalitis in X-linked hypogammaglobulinemia by intraventricular administration of immunoglobulin. New Eng. J. Med. 312: 351-353, 1985. [PubMed: 4038544] [Full Text: https://doi.org/10.1056/NEJM198502073120605]

  9. Fearon, E. R., Winkelstein, J. A., Civin, C. I., Pardoll, D. M., Vogelstein, B. Carrier detection in X-linked agammaglobulinemia by analysis of X-chromosome inactivation. New Eng. J. Med. 316: 427-431, 1987. [PubMed: 2880293] [Full Text: https://doi.org/10.1056/NEJM198702193160802]

  10. Ferrari, S., Lougaris, V., Caraffi, S., Zuntini, R., Yang, J., Soresina, A., Meini, A., Cazzola, G., Rossi, C., Reth, M., Plebani, A. Mutations of the Ig-beta gene cause agammaglobulinemia in man. J. Exp. Med. 204: 2047-2051, 2007. [PubMed: 17709424] [Full Text: https://doi.org/10.1084/jem.20070264]

  11. Garvie, J. M., Kendall, A. C. Congenital agammaglobulinaemia: report of two further cases. Brit. Med. J. 1: 548-550, 1961. [PubMed: 20789077] [Full Text: https://doi.org/10.1136/bmj.1.5225.548]

  12. Geha, R. S., Rosen, F. S., Merler, E. Identification and characterization of subpopulations of lymphocytes in human peripheral blood after fractionation on discontinuous gradients of albumin: the cellular defect in X-linked agammaglobulinemia. J. Clin. Invest. 52: 1726-1734, 1973. [PubMed: 4578158] [Full Text: https://doi.org/10.1172/JCI107354]

  13. Gitlin, D., Craig, J. M. The thymus and other lymphoid tissues in congenital agammaglobulinemia. I. Thymic alymphoplasia and lymphocytic hypoplasia and their relation to infection. Pediatrics 32: 517-530, 1963. [PubMed: 14069093]

  14. Guioli, S., Arveiler, B., Bardoni, B., Notarangelo, L. D., Panina, P., Duse, M., Ugazio, A., Oberle, I., de Saint Basile, G., Mandel, J. L., Camerino, G. Close linkage of probe p212 (DXS178) to X-linked agammaglobulinemia. Hum. Genet. 84: 19-21, 1989. [PubMed: 2575070] [Full Text: https://doi.org/10.1007/BF00210664]

  15. Hendriks, R. W., Mensink, E. J. B. M., Kraakman, M. E. M., Thompson, A., Schuurman, R. K. B. Evidence for male X chromosomal mosaicism in X-linked agammaglobulinemia. Hum. Genet. 83: 267-270, 1989. [PubMed: 2571563] [Full Text: https://doi.org/10.1007/BF00285169]

  16. Hitzig, W. H., Willi, H. Hereditary lymphoplasmocytic dysgenesis ('alymphocytose mit agammaglobulinamia'). Schweiz. Med. Wschr. 91: 1625-1633, 1961. [PubMed: 13907792]

  17. Janeway, C. A., Apt, L., Gitlin, D. Agammaglobulinemia. Trans. Assoc. Am. Phys. 66: 200-202, 1953. [PubMed: 13136263]

  18. Janeway, C. A., Gitlin, D., Craig, J. M., Grice, D. C. 'Collagen disease' in patients with congenital agammaglobulinemia. Trans. Assoc. Am. Phys. 69: 93-97, 1956. [PubMed: 13380950]

  19. Journet, O., Durandy, A., Doussau, M., Le Deist, F., Couvreur, J., Griscelli, C., Fischer, A., de Saint-Basile, G. Carrier detection and prenatal diagnosis of X-linked agammaglobulinemia. Am. J. Med. Genet. 43: 885-887, 1992. [PubMed: 1642281] [Full Text: https://doi.org/10.1002/ajmg.1320430527]

  20. Kerstens, P. J. S. M., Endtz, H. P., Meis, J. F. G. M., Oyen, W. J. G., Koopman, R. J. I., van den Broek, P. J., van der Meer, J. W. M. Erysipelas-like skin lesions associated with Campylobacter jejuni septicemia in patients with hypogammaglobulinemia. Europ. J. Clin. Microbiol. Infect. Dis. 11: 842-847, 1992. [PubMed: 1468426] [Full Text: https://doi.org/10.1007/BF01960888]

  21. Kornfeld, S. J., Kratz, J., Haire, R. N., Litman, G. W., Good, R. A. X-linked agammaglobulinemia presenting as transient hypogammaglobulinemia of infancy. J. Allergy Clin. Immun. 95: 915-917, 1995. [PubMed: 7722175] [Full Text: https://doi.org/10.1016/s0091-6749(95)70138-9]

  22. Kwan, S.-P., Kunkel, L., Bruns, G., Wedgwood, R. J., Latt, S., Rosen, F. S. Mapping of the X-linked agammaglobulinemia locus by use of restriction fragment-length polymorphism. J. Clin. Invest. 77: 649-652, 1986. [PubMed: 3003164] [Full Text: https://doi.org/10.1172/JCI112351]

  23. Kwan, S.-P., Terwilliger, J., Parmley, R., Raghu, G., Sandkuyl, L. A., Ott, J., Ochs, H., Wedgwood, R., Rosen, F. Identification of a closely linked DNA marker, DXS178, to further refine the X-linked agammaglobulinemia locus. Genomics 6: 238-242, 1990. [PubMed: 2307467] [Full Text: https://doi.org/10.1016/0888-7543(90)90562-9]

  24. Landreth, K. S., Engelhard, D., Anasetti, C., Kapoor, N., Kincade, P. W., Good, R. A. Pre-B cells in agammaglobulinemia: evidence for disease heterogeneity among affected boys. J. Clin. Immun. 5: 84-89, 1985. [PubMed: 3872879] [Full Text: https://doi.org/10.1007/BF00915005]

  25. Lau, Y. L., Levinsky, R. J., Malcolm, S., Goodship, J., Winter, R., Pembrey, M. Genetic prediction in X-linked agammaglobulinaemia. Am. J. Med. Genet. 31: 437-448, 1988. [PubMed: 3232706] [Full Text: https://doi.org/10.1002/ajmg.1320310224]

  26. Lederman, H. M., Winkelstein, J. A. X-linked agammaglobulinemia: an analysis of 96 patients. Medicine 64: 145-156, 1985. [PubMed: 2581110]

  27. Levitt, D., Ochs, H., Wedgwood, R. J. Epstein-Barr virus-induced lymphoblastoid cell lines derived from the peripheral blood of patients with X-linked agammaglobulinemia can secrete IgM. J. Clin. Immun. 4: 143-150, 1984. [PubMed: 6327761] [Full Text: https://doi.org/10.1007/BF00915048]

  28. Lopez Granados, E., Porpiglia, A. S., Hogan, M. B., Matamoros, N., Krasovec, S., Pignata, C., Smith, C. I. E., Hammarstrom, L., Bjorkander, J., Belohradsky, B. H., Casariego, G. F., Garcia Rodriguez, M. C., Conley, M. E. Clinical and molecular analysis of patients with defects in mu heavy chain gene. J. Clin. Invest. 110: 1029-1035, 2002. [PubMed: 12370281] [Full Text: https://doi.org/10.1172/JCI15658]

  29. Malcolm, S., de Saint Basile, G., Arveiler, B., Lau, Y. L., Szabo, P., Fischer, A., Griscelli, C., Debre, M., Mandel, J. L., Callard, R. E., Robertson, M. E., Goodship, J. A., Pembrey, M. E., Levinsky, R. J. Close linkage of random DNA fragments from Xq21.3-22 to X-linked agammaglobulinaemia (XLA). Hum. Genet. 77: 172-174, 1987. [PubMed: 2888720] [Full Text: https://doi.org/10.1007/BF00272387]

  30. Malcolm, S., Goodship, J., Read, A. P., Donnai, D., Levinsky, R. J. Linkage of Bruton's agammaglobulinemia (IMD1) to probes in Xq21.3-22: evidence for a second gene coding for X linked agammaglobulinemia. (Abstract) Cytogenet. Cell Genet. 51: 1038, 1989.

  31. McKinney, R. E., Jr., Katz, S. L., Wilfert, C. M. Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Rev. Infect. Dis. 9: 334-356, 1987. [PubMed: 3296100] [Full Text: https://doi.org/10.1093/clinids/9.2.334]

  32. Mease, P. J., Ochs, H. D., Wedgwood, R. J. Successful treatment of echovirus meningoencephalitis and myositis-fasciitis with intravenous immune globulin therapy in a patient with X-linked agammaglobulinemia. New Eng. J. Med. 304: 1278-1281, 1981. [PubMed: 6783908] [Full Text: https://doi.org/10.1056/NEJM198105213042107]

  33. Melamed, I., Bujanover, Y., Igra, Y. S., Schwartz, D., Zakuth, V., Spirer, Z. Campylobacter enteritis in normal and immunodeficient children. Am. J. Dis. Child. 137: 752-753, 1983. [PubMed: 6869333] [Full Text: https://doi.org/10.1001/archpedi.1983.02140340036009]

  34. Mensink, E. J. B. M., Schot, J. D. L., Tippett, P., Ott, J., Schuurman, R. K. B. X-linked agammaglobulinemia and the red blood cell determinants Xg and 12E7 are not closely linked. Hum. Genet. 68: 303-309, 1984. [PubMed: 6595200] [Full Text: https://doi.org/10.1007/BF00292589]

  35. Mensink, E. J. B. M., Thompson, A., Schot, J. D. L., Kraakman, M. E. M., Sandkuyl, L. A., Schuurman, R. K. B. Genetic heterogeneity in X-linked agammaglobulinemia complicates carrier detection and prenatal diagnosis. Clin. Genet. 31: 91-96, 1987. [PubMed: 2881637] [Full Text: https://doi.org/10.1111/j.1399-0004.1987.tb02775.x]

  36. Mensink, E. J. B. M., Thompson, A., Schot, J. D. L., van de Greef, W. M. M., Sandkuyl, L. A., Schuurman, R. K. B. Mapping of a gene for X-linked agammaglobulinemia and evidence for genetic heterogeneity. Hum. Genet. 73: 327-332, 1986. [PubMed: 3502688] [Full Text: https://doi.org/10.1007/BF00279095]

  37. Ochs, H. D., Smith, C. I. E. X-linked agammaglobulinemia: a clinical and molecular analysis. Medicine 75: 287-299, 1996. [PubMed: 8982147] [Full Text: https://doi.org/10.1097/00005792-199611000-00001]

  38. Ott, J., Mensink, E. J. B. M., Thompson, A., Schot, J. D. L., Schuurman, R. K. B. Heterogeneity in the map distance between X-linked agammaglobulinemia and a map of nine RFLP loci. Hum. Genet. 74: 280-283, 1986. [PubMed: 2877937] [Full Text: https://doi.org/10.1007/BF00282549]

  39. Pearl, E. R., Vogler, L. B., Okos, A. J., Crist, W. M., Lawton, A. R., III, Cooper, M. D. B-lymphocyte precursors in human bone marrow: an analysis of normal individuals and patients with antibody-deficient states. J. Immun. 120: 1169-1175, 1978. [PubMed: 346998]

  40. Perryman, L. E., McGuire, T. C., Banks, K. L. Infantile X-linked agammaglobulinemia: agammaglobulinemia in horses. Am. J. Path. 111: 125-127, 1983. [PubMed: 6837721]

  41. Race, R., Sanger, R. Blood Groups in Man. (6th ed.) Oxford: Blackwell (pub.) 1975. P. 601.

  42. Rawlings, D. J., Witte, O. N. Bruton's tyrosine kinase is a key regulator in B-cell development. Immun. Rev. 138: 105-119, 1994. [PubMed: 8070812] [Full Text: https://doi.org/10.1111/j.1600-065x.1994.tb00849.x]

  43. Rosen, F. S., Cooper, M. D., Wedgwood, R. J. P. The primary immunodeficiencies. New Eng. J. Med. 311: 235-242 and 300-310, 1984. [PubMed: 6234467] [Full Text: https://doi.org/10.1056/NEJM198407263110406]

  44. Rudge, P., Webster, A. D., Revesz, T., Warner, T., Espanol, T., Cunningham-Rundles, C., Hyman, N. Encephalomyelitis in primary hypogammaglobulinaemia. Brain 119: 1-15, 1996. [PubMed: 8624673] [Full Text: https://doi.org/10.1093/brain/119.1.1]

  45. Sakamoto, M., Kanegane, H., Fujii, H., Tsukada, S., Miyawaki, T., Shinomiya, N. Maternal germinal mosaicism of X-linked agammaglobulinemia. Am. J. Med. Genet. 99: 234-237, 2001. [PubMed: 11241495] [Full Text: https://doi.org/10.1002/1096-8628(2001)9999:9999<::aid-ajmg1159>3.0.co;2-m]

  46. Saulsbury, F. T., Bernstein, M. T., Winkelstein, J. A. Pneumocystis carinii pneumonia as the presenting infection in congenital hypogammaglobulinemia. J. Pediat. 95: 559-561, 1979. [PubMed: 314502] [Full Text: https://doi.org/10.1016/s0022-3476(79)80766-0]

  47. Schuurman, R. K. B., Mensink, E. J. B. M., Sandkuyl, L. A., Post, E. D. M., van Velzen-Blad, H. Early diagnosis in X-linked agammaglobulinaemia. Europ. J. Pediat. 147: 93-95, 1988. [PubMed: 2892683] [Full Text: https://doi.org/10.1007/BF00442622]

  48. Schwaber, J., Chen, R. H. Premature termination of variable gene rearrangement in B lymphocytes from X-linked agammaglobulinemia. J. Clin. Invest. 81: 2004-2009, 1988. [PubMed: 2838527] [Full Text: https://doi.org/10.1172/JCI113550]

  49. Schwaber, J., Koenig, N., Girard, J. Correction of the molecular defect in B lymphocytes from X-linked agammaglobulinemia by cell fusion. J. Clin. Invest. 82: 1471-1476, 1988. [PubMed: 3139715] [Full Text: https://doi.org/10.1172/JCI113754]

  50. Schwaber, J., Molgaard, H., Orkin, S. H., Gould, H. J., Rosen, F. S. Early pre-B cells from normal and X-linked agammaglobulinaemia produce C(mu) without an attached V(H) region. Nature 304: 355-358, 1983. [PubMed: 6192341] [Full Text: https://doi.org/10.1038/304355a0]

  51. Schwaber, J., Payne, J., Chen, R. B lymphocytes from X-linked agammaglobulinemia: delayed expression of light chain and demonstration of lyonization in carriers. J. Clin. Invest. 81: 514-522, 1988. [PubMed: 3123521] [Full Text: https://doi.org/10.1172/JCI113349]

  52. Schwaber, J. Evidence for failure of V(D)J recombination in bone marrow pre-B cells from X-linked agammaglobulinemia. J. Clin. Invest. 89: 2053-2059, 1992. [PubMed: 1602011] [Full Text: https://doi.org/10.1172/JCI115817]

  53. Seligmann, M., Fudenberg, H. H., Good, R. A. A proposed classification of primary immunologic deficiencies. (Editorial) Am. J. Med. 45: 817-825, 1968. [PubMed: 5722637] [Full Text: https://doi.org/10.1016/0002-9343(68)90180-0]

  54. Smith, C. I. E., Witte, O. N. X-linked agammaglobulinemia: a disease of Btk tyrosine kinase.In: Ochs, H. D.; Smith, C. I. E.; Puck, J. M. (eds.) : Primary Immunodeficiency Diseases: A Molecular and Genetic Approach. New York: Oxford University Press 1999. Pp. 263-284.

  55. Thompson, L. F., Boss, G. R., Spiegelberg, H. L., Bianchino, A., Seegmiller, J. E. Ecto-5'-nucleotidase activity in lymphoblastoid cell lines derived from heterozygotes for congenital X-linked agammaglobulinemia. J. Immun. 125: 190-193, 1980. [PubMed: 6247393]

  56. Thorsteinsson, L., Ogmundsdottir, H. M., Sigfusson, A., Arnason, A., Eyjolfsson, G., Jensson, O. The first Icelandic family with X-linked agammaglobulinaemia: studies of genetic markers and immune function. Scand. J. Immun. 32: 273-280, 1990. [PubMed: 2402596] [Full Text: https://doi.org/10.1111/j.1365-3083.1990.tb02920.x]

  57. van der Meer, J. W. M., Mouton, R. P., Daha, M. R., Schuurman, R. K. B. Campylobacter jejuni bacteraemia as a cause of recurrent fever in a patient with hypogammaglobulinaemia. J. Infect. 12: 235-239, 1986. [PubMed: 3722839] [Full Text: https://doi.org/10.1016/s0163-4453(86)94190-3]

  58. van der Meer, J. W. M., Weening, R. S., Schellekens, P. T. A., van Munster, I. P., Nagengast, F. M. Colorectal cancer in patients with X-linked agammaglobulinaemia. Lancet 341: 1439-1440, 1993. [PubMed: 8099142] [Full Text: https://doi.org/10.1016/0140-6736(93)90883-i]

  59. Vetrie, D., Vorechovsky, I., Sideras, P., Holland, J., Davies, A., Flinter, F., Hammarstrom, L., Kinnon, C., Levinsky, R., Bobrow, M., Smith, C. I. E., Bentley, D. R. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361: 226-233, 1993. Note: Erratum: Nature 364: 362 only, 1993. [PubMed: 8380905] [Full Text: https://doi.org/10.1038/361226a0]

  60. Wood, P. M. D., Mayne, A., Joyce, H., Smith, C. I. E., Granoff, D. M., Kumararatne, D. S. A mutation in Bruton's tyrosine kinase as a cause of selective anti-polysaccharide antibody deficiency. J. Pediat. 139: 148-151, 2001. [PubMed: 11445810] [Full Text: https://doi.org/10.1067/mpd.2001.115970]

Online Mendelian Inheritance in Man (OMIM) (2024)

FAQs

What is the OMIM online mendelian inheritance in man a tool for? ›

OMIM® - Online Mendelian Inheritance in Man. ®

OMIM focuses on the relationship between phenotype and genotype. It is updated daily, and the entries contain copious links to other genetics resources. This database was initiated in the early 1960s by Dr. Victor A.

What is online Mendelian inheritance in man? ›

Online Mendelian Inheritance in Man (OMIM™) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support research and education in human genomics and the practice of clinical genetics.

How to cite OMIM page? ›

How should I cite OMIM? It is usually most appropriate to cite the actual journal article for the data of interest. Citing the printed version of MIM: McKusick, V.A.: Mendelian Inheritance in Man.

How much does OMIM cost? ›

Use of OMIM.org is provided free of charge to any individual for personal use, for educational or scholarly use, or for research purposes through the front end of the database.

What is Mendelian inheritance used for? ›

The inheritance patterns of single gene diseases are often referred to as Mendelian since Gregor Mendel first observed the different patterns of gene segregation for selected traits in garden peas and was able to determine probabilities of recurrence of a trait for subsequent generations.

What is the history of OMIM? ›

Versions and history

OMIM is the online continuation of Victor A. McKusick's Mendelian Inheritance in Man (MIM), which was published in 12 editions between 1966 and 1998. Nearly all of the 1,486 entries in the first edition of MIM discussed phenotypes.

What does an OMIM number tell you? ›

Each OMIM entry is assigned a unique six-digit number whose first digit indicates whether its inheritance is autosomal, X-linked, Y-linked or mitochondrial: 1, autosomal loci or phenotypes (entries created before May 15, 1994); 2, autosomal loci or phenotypes (entries created before May 15, 1994); 3, X-linked loci or ...

What are two examples of Mendelian genetics in humans? ›

Dimples, for example, are a dominant Mendelian trait. Therefore, people who inherit one dominant allele for dimples have the trait. Similarly, with freckles, if a person inherits even one dominant allele, they will have freckles.

Is OMIM an ontology? ›

Online Mendelian Inheritance in Man Ontology

OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes as well as the relationship between them, that is freely available and updated daily. The OMIM ontology contains terms used within the OMIM database.

Is OMIM reliable? ›

OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily.

How to search OMIM? ›

OMIM Search Help
  1. OMIM Search Help.
  2. For basic searches, simply enter the terms in the search box and click the 'Search' button: ...
  3. Adding a '+' (plus) operator before specific terms will ensure that these appear in the entries returned: ...
  4. You can search for phrases by adding quotation marks at both ends of the phrase:

Is OMIM a primary database? ›

Unlike databases of primary data, OMIM synthesizes and summarizes new and important information based on expert review of the biomedical literature.

What are the single gene disorders? ›

Some of the more common single-gene disorders include cystic fibrosis, hemochromatosis, Tay-Sachs, and sickle cell anemia. Even though these diseases are primarily caused by a single gene, several different mutations can result in the same disease but with varying degrees of severity and phenotype.

What is the disease causing mutation database? ›

HGMD records all germ-line disease-causing mutations and disease-associated/functional polymorphisms reported in the literature, and provides these data in a readily accessible format to all interested parties, whether they are from an academic, clinical or commercial background.

What is a phenotype mim number? ›

Every gene or disease/phenotype is called an 'entry' and each entry has a unique 6 digit number ID called the MIM number. The meaning of the first number of the 6 digits of a MIM number is as follows1: 1----- (100000- ) 2----- (200000- ): Autosomal loci or phenotypes (entries created before May 15, 1994)

What is Mendelian randomization used for? ›

Mendelian randomization is a method of using measured variation in genes of known function to examine the causal effect of a modifiable exposure on disease in observational studies.

What is exome sequencing for Mendelian disorders? ›

Exome sequencing is revolutionizing Mendelian disease gene identification. This results in improved clinical diagnosis, more accurate genotype-phenotype correlations and new insights into the role of rare genomic variation in disease.

What is the ASL gene OMIM? ›

Description. The ASL gene encodes the subunit of argininosuccinate lyase (EC 4.3. 2.1) is a urea cycle enzyme that catalyzes the cleavage of argininosuccinate to fumarate and arginine, an essential step in the process of detoxification of ammonia via the urea cycle (O'Brien et al., 1986).

Top Articles
Latest Posts
Article information

Author: Clemencia Bogisich Ret

Last Updated:

Views: 5665

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Clemencia Bogisich Ret

Birthday: 2001-07-17

Address: Suite 794 53887 Geri Spring, West Cristentown, KY 54855

Phone: +5934435460663

Job: Central Hospitality Director

Hobby: Yoga, Electronics, Rafting, Lockpicking, Inline skating, Puzzles, scrapbook

Introduction: My name is Clemencia Bogisich Ret, I am a super, outstanding, graceful, friendly, vast, comfortable, agreeable person who loves writing and wants to share my knowledge and understanding with you.